نوارمغز(EEG)

اگر جریان الکتریکی موجود در<u>مغزانسان</u> را به صورت منحنی در بیاوریم، به این کار الکتروآنسفوگرافی می گویند.

منحنى ايجاد شده:الكترو آنسفو گرام(EEG).

دستگاه ثبت كننده:الكتروآنسفوگراف

EEG در تشخیص بیماری و بررسی عملکرد مغز کمک کننده است مثلا با نوار مغز میتوان چک کرد که جایی از مغز مختل شده است یا نه؟

دستگاه عصبی

دستگاه عصبی <u>فقط</u> در <u>جانوران</u> دیده می شود ولی <u>همه</u> جانوران دستگاه عصبی <u>ندارند</u> .<u>همه</u> جانوران <u>پر سلولی</u> هستند. <u>هیچ</u> جانور تک سلولی وجود ندارد.

بافت عصبي

یاخته های بافت عصبی فقط یاخته های عصبی نیستند.یاخته های بافت عصبی می توانند یاخته های غیر عصبی باشند.

نورون

همه نورون ها <u>تک هسته ای</u> هستند. با هرظاهری هم که باشد دارای <u>یک هسته</u> و <u>یک جسم سلولی</u> است.

دندریت

تعداد دندریت ها بستگی به نورون دارد. دریک نورون میتوان $\frac{\Delta}{2}$ یا $\frac{\Delta}{2}$ دریافت میکنند و به جسم سلولی هدایت می کنند.

آکسون

در همه نورون ها فقط یک آکسون وجود دارد. اما طول آن در نورون های متفاوت فرق می کند.

پایانه آکسونی

انتهای آکسون یک پایانه آکسونی وجود دارد. درهمه نورون ها ، چند رشته پایانه آکسونی وجود دارد. وظیفه انتقال(نه هدایت)

گره رانویه

نقطه ای که غلاف میلین ندارد و در تماس با ماده اطراف است را گره رانویه می گوییم.در گره رانویه پیام عصبی می تواند تولید بشود.

غلاف ميلين

*وقتی هدایت جهشی باشد ، قطعا آن نورون دارای غلاف میلین است.میلین از جنس غشاء است.میلین در واقع غشاء سلول های نوروگلیا است.

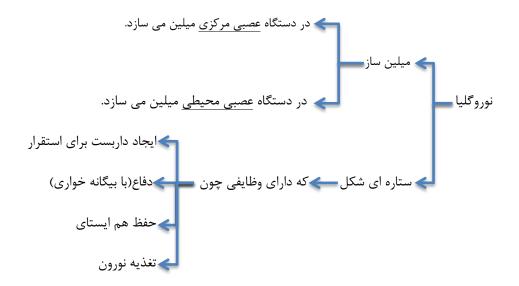
*هرچه تعداد غلاف ميلين كمتر باشد، سرعت هدايت پيام بالاتر مي رود

*همه نوروگلیاها غشاء سازی نمی کنند.

*جایی که میلین وجود دارد،پتانسیل عمل نیست.

*هرچه تعداد ميلين ها كمتر باشد، سرعت هدايت پيام عصبي بالاتر مي رود.

<u>نورون ها</u>



*گاها نورون های حسی خودشان گیرنده هستند.

*گاها سلول پیش سیناپسی ، نورون نیست.

*سلولی که پیش سیناپسی است قطعا توانایی تولید پیام عصبی را دارد.

نوروگليا

«دردستگاه عصبی ماکروفاژ وجود دارد که با بیگانه خواری از دستگاه عصبی محافظت می کند.

<u>نورون حسى</u>

نورون حسى <u>تک دندریت</u> است. یک آکسون دارد. طول دندریت این نورون بیشتر از طول آکسون آن است. تنها نورونی است که هم آکسون و هم دندریت آن میتواند میلین دارباشد.

تعداد دندریت: ۱ تعداد آکسون: ۱ تعداد جسم یاخته ای: ۱ تعداد پایانه آکسونی:متعدد تعداد هسته: ۱ شکل هسته: گرد محل جسم یاخته ای:محیطی امکان وجود گره رانویه:دارد امکان وجود میلین:دارد(دندریت و آکسون) طول دندریت:بلند طول آکسون:کوتاه امکان هدایت جهشی:دارد حضور در ماده خاکستری دستگاه عصبی مرکزی:پایانه آکسونی

نورون رابط

نورون رابط از لحاظ علمي فاقد ميلين است اما براساس كتاب مي تواند ميلين داشته باشد.

تعداد دندریت:متعدد تعداد آکسون:۱ تعداد جسم یاخته ای:۱ تعداد پایانه آکسونی:متعدد تعداد هسته:۱ شکل هسته:گرد محل جسم یاخته ای:مرکزی امکان وجود گره رانویه:دارد امکان وجود میلین:دارد طول دندریت:کوتاه طول آکسون:بلند امکان هدایت جهشی:دارد حضور در ماده خاکستری دستگاه عصبی مرکزی:ممکنه کلش

<u>نورون حرکتی</u>

فقط آكسون أن ميتواند ميلين داشته باشد. دندريت أن اصلا نمى تواند ميلين داشته باشد.

تعداد دندریت:متعدد تعداد آکسون:۱ تعداد جسم یاخته ای:۱ تعداد پایانه آکسونی:متعدد تعداد هسته:۱ شکل هسته:بیضی محل جسم یاخته ای:مرکزی امکان وجود گره رانویه:دارد امکان وجود میلین:دارد(آکسون) طول دندریت:کوتاه طول آکسون:بلند امکان هدایت جهشی:دارد حضور در ماده خاکستری دستگاه عصبی مرکزی:دندریت وجسم یاخته ای