سلام سلاااام🤩
بچه ها تو این تاپیک میخوایم دانشجوها هم مثل کنکوریا ساعت مطالعه شون رو اعلام کنن ✌
هم انگیزه بشه برای فارغ التحصیلای آلاء تا تو محیط دانشگاه هم دست از تلاشِ آلائی برندارن 💪و هم اینکه کنکوریای با درسایی که دانشجوها میخونن یکم آشنا میشن🤗
پس از امشب استارت این تاپیک رو میزنیم و هرشب میایم و میگیم در طول روز چ درسایی رو خوندیم ،چند ساعت و چیکارا کردیم😁
دعوت میکنم از @فارغ-التحصیلان-آلاء که باهامون همراه بشن🤝
خیلی ممنون از z Gheibi و M.ba78 بابت پیشنهاد و همراهیشون❤
راستی از romisa جانم هم دعوت میکنم بهمون سر بزنه و همراهیمون کنه😍
سلام به بچه های عزیز آلا🌻
خب دوستان تو این تاپیک قراره که تجربه هامون رو از دانشجویی بگیم
نحوه درس خوندن، نحوه ارتباطات،خوابگاه و... هر صحبتی که تو ذهن تون هست
که ورودی های امسال مون بتونن استفاده کنن😊
ممکنه حتی یه سری نکات و صحبت ها بگیم که خودمون هم ندونیم و بهمون کمک بشه😅
و اینکه بچه های جدید حتما سوالات شون رو بپرسن
@فارغ-التحصیلان-آلاء @رتبه-های-انجمن-آلاء
@تجربیا @ریاضیا @انسانیا
@بچه-های-تجربی-کنکور-1402
@بچه-های-ریاضی-کنکور-1402
@همیار
سلام.
تا حالا فک کردین به یه سیستم عامل دیگه مهاجرت کنین؟ گاهی اوقات حس نکردین از ویندوز خسته شدین؟
خب من درمانش رو دارم بیاین لینوکس بریزیم، همه!
اصلا لینوکس چیه؟
خب اینه: "لینوکس (Linux) یک سیستم عامل رایگان و متن باز است که بر پایه هسته Linux (کرنل) توسعه داده شده است. هسته لینوکس مسئولیت مدیریت منابع سختافزاری و ارتباط بین نرمافزار و سختافزار در سیستم را بر عهده دارد."
متن بازی (open source ) یعنی چی؟ یعنی کد هاش برای همه آزاد و همه می تونن بیاین لینوکس رو تغییر بدن، (گویی انگولش کنن) اما ویندوز این شکل نیست کدهای توسعه ویندوز، رو فقط خود مایکروسافت داره. (واسه همین ویندوز گرونه 199 دلار ویندوز 11 پرو 😲 )
خلاصه اش اقا اینکه لینوکس یه هسته ی اصلی داره حالا می رسیم به توزیع های لینوکس.
اینم تاریخچه ش :در سال 1991 فردی با نام لینوس توروالدز (Linus Torvalds)، دانشجوی رشته علوم کامپیوتر در دانشگاه هلسینکی فنلاند، تصمیم گرفت یک سیستم عامل جدید بر اساس یونیکس (Unix) طراحی کند. او نیازمند یک سیستم عامل برای استفاده شخصی و توسعه برنامههای خود بود. لینوس کد منبع سیستم عامل خود را در اینترنت منتشر کرد و خواستار کمک و بازخورد از جامعه برنامهنویسی شد. این کد با عنوان “هسته لینوکس” شناخته میشد.
گروهی از برنامهنویسان از سراسر جهان به لینوس پیوستند و شروع به توسعه و بهبود هسته لینوکس کردند. این جامعه برنامهنویسی فعال با همکاری بینالمللی سایر برنامه نویسان باعث شد هسته لینوکس به سرعت رشد کند. در سال 1994، نسخه اولیه رسمی Linux با ورژن 1.0 منتشر شد. این نسخه اولیه شامل امکانات اساسی سیستم عامل شبیه به یونیکس بود و از آن پس، توسعه و بهبودهای بیشتری در هسته لینوکس صورت گرفت.
(اینجاش مهمه)
با گذر زمان، جامعه برنامهنویسی Linux رشد کرد و شرکتها و سازمانها نیز به توسعه و پیشرفت لینوکس کمک کردند. این شرکتها شامل ردهت (RedHat)، اینتل (Intel)، آیبیام (IBM) و بسیاری دیگر بودند. به مرور و با گذشت زمان، Linux به عنوان یک سیستم عامل پرکاربرد، به ویژه در سرورها و دستگاههای همراه، شناخته شد. همچنین، توزیعهای لینوکس محبوبی مانند اوبونتو (Ubuntu)، فدورا (Fedora) و دبیان (Debian) با امکانات و رابط کاربری متنوعی ارائه شدند.
از آن زمان تا به امروز، Linux به یکی از قدرتمندترین و پرطرفدارترین سیستم عاملها تبدیل شده است و در بسیاری از زمینهها از توزیع های مختلف Linux استفاده میشود، از جمله سرورها، دستگاههای هوشمند و رایانههای شخصی.
اگه به میخواین در آینده مهندسی نرم افزار، کامپیوتر، ای تی، شبکه و هزاران چیز دیگه مربوط به علوم کامپیوتر و کامپیوتر بخونین پیشنهاد می کنم همین الان لینوکس رو نصب کنید.
حالا چه توزیعی بریزیم؟
من نزدیک 1.5 ساله از ویندوز مهاجرت کردم به لینوکس و تاحالا سه تا توزیع مختلف روی ماشین مجازی ریختم و تست کردم. عملا انچنان تفاوت خاصی با هم ندارند ولی
برای شروع پیشنهاد می کنم (یعنی خیلی نوبی) : اوبونتو (ubuntu) یا linux mint یا manjaro ، این توزیع های خوبن
من در حال حاضر از manjaro استفاده می کنم که واقعا توزیع مناسبیه، ولی اگه اصلا لینوکس کار نکردین ubuntu یا linux mint بریزین.
حالا چجوری لینوکس بریزیم؟
مثلا برای نصب ubuntu میرم تو گل سرچ می کنیم download ubuntu و وبسایت رسمی ubuntu نسخه اخرین نسخه LTS اوبنتو رو بریزین ( در حال حاضر اخرین نسخه Ubuntu 24.04.1 LTS) هستش
[LTS یعنی چه مخفف long-term support یعنی ما معنی پنج سال به روز رسانی رایگان امنیتی میدیم که یعنی توزیع پایدار و با ثباتی واسه همین برای تازه کارا مناسبه]
یه فایلی به پسوند iso. دانلود میشه.
با نرم افزار refus این فایل رو روی یه فلش یا سی دی بوت می کنیم ( آموزش هاش داخل آقای گوگل هست و می تونین سی دی اوبونتو رو بخرید که بوت شده)
فلش رو وصل می کنیم، سیستم یه ریستارت می زنیم بعد قبل اینکه سیستم بالا بیاد یکی از دکه های f12 یا f10 یا del یا ... ( با توجه به نوع مادربرد، لپتاپ و ... احتمال 99 درصد f12 هستش) از منو بوت فلش رو انتخاب می کنیم و تامام وارد پنجره نصب اوبونتو میشیم که به شدت ساده هستش، داخل اینترنت میلیون ها آموزش نصب اوبنتو و بقیه توزیع ها هستش)
▶️| #معرفی_رشته
بریم برای یه معرفی رشته ی جداب
#مهندسی_پزشکی
☁️رشته ی مهندسی پزشکی چیه؟
ساخت تجهیزات پزشکی یکی از کارهایی هست که بچه های این رشته انجام میدن
این علم تلاش می کنه تا مهندسین پزشکی بتونن از ایده های پزشکی استفاده کنن
🌥کسی که این رشته رو خونده باید چه ویژگی هایی داشته باشه؟
خلاقیت و نو اوری داشته باشه
مسلط به زبان انگلیسی باشه
نرم افزار های تخصصی طراحی رو بلد باشه
قادر به تحلیل نیاز های مشتریان و بیماران باشه
ریاضی، فیزیک، زیست و شیمی اش قوی باشه
⛅️ تهش چی میشه؟
کار در شرکت های تخصصی تجهیزات پزشکی
کار در شرکت های دانش بنیان در حوزه ی مهندسی پزشکی
نمایندگی فروش و خدمات پس از فروش تجهیزات پزشکی وارداتی
طراحی و ساخت دستگاه های تشخیص مشکلات پزشکی و بیماری ها
کار و تحقیق در جنبه های فنی و مهندسی مربوط به سیستم های بیولوژیکی انسان ها و حیوانات
نصب، تنظیم و نگهداری، تعمیر یا پشتیبانی فنی تجهیزات پزشکی با عنوان متخصص تجهیزات پزشکی بیمارستانی
🌤 مسیر تحصیلی اش چیه؟
کارشناسی: مهندسی پزشکی
کارشناسی ارشد: بیوالکتریک، بیومکانیک، بیومتریال
دکتری: مهندسی بافت، رباتیک پزشکی، پردازش سیگنال ها با تصاویر پزشکی، ابزار دقیق پزشکی، مهندسی ورزش، بیوالکتریک، بیومکانیک، بیومتریال
منبع یک کاناله امیدوارم اطلاعات درست باشند. باز هم خودتون بررسی کنید
@ida-shateri
@بچه-های-کنکور-ریاضی-1400
@ریاضیا
سلام
امیدوارم حالتون خوب باشه
یلدای گذشته مبارکتون 🙂❄️🌸
یه سوال داشتم از دانشجو های آلایی
روش خاصی برای جزوه نویسی دارین ؟
اون دسته دروسی که علاوه بر فایل ، صحبتای استاد هم مهمن رو چیکار میکنین ؟
من خودم نکات اضافه ی گفته شده سر کلاس و فایل خود استاد ( در صورتی که استاد فایلشو بده 🙄 ) رو با هم تو جزوه پاک نویس میکنم ولی خب آخر ترم با حجم بالای نکات چرکنویس و فایلای نوشته نشده روبرو میشم😐💔
و از طرفی خوندن و تسلط روی مطالب نسبت به جزوه نویسی مهم تره ، مخصوصا الان که نزدیک به امتحانات ترم هستیم
ممنون میشم تجربیاتتون در این زمینه رو به اشتراک بذارین 🙏🌸
سلول های بنیادی راهی به آینده
-
استراتا گرافت، جایگزین پوستی تولید شده توسط کشت شبیه سازی شده ی ارگان از سلول های کراتینوسیت انسانی است که بصورت یک لایه سلول اپیدرمال انسانی هوادهی شده است که شبیه به لایه شاخی پوست است.این محصول به لحاظ مرفولوژی، بیان مارکرهای تمایزی، غشای پایه، عملکرد حفاظتی در مقابل نفوذ باکتری ها و بیان مارکرهای ایمنولوژیکی بر روی آن بسیار شبیه پوست انسان است و این مسله باعث اهمیت و امکان رقابت این محصول با سایر محصولات قدیمی تر موجود در بازار شده است.
.
استراتاگرافت، در کلینیکال ترایال های نوع 1 و 2 بعنوان یک پوشش موقت برای بیماران با سوختگی کمتر از 5 درصد از سطح بدن بررسی شد. در این مطالعه، واکنش های سیستم ایمنی نیز در یک مطالعه مقایسه ای و تصادفی مورد بررسی قرار گرفت. -
ویژگی های ایمنولوژیکی این جایگزین های پوستی بیولوژیک قبل و بعد از استفاده در بیماران مبتلا به زخم مورد بررسی قرار گرفته است. بیماران حساس شده به حضور سلول های کشت داده شده از سل لاین کراتینوست های انسانی، قبل و بعد از پیوند با استراتاگرفت از طریق توانائی این سلول ها در القای تکثیر لنفوسیت ها، آمادگی و توانمندی القای لیز به واسطه سلول های کشنده طبیعی بیمار و میزان ایجاد واکنش های اختصاصی بر علیه آنتی بادی های موجود بر روی سلول های مذکور مورد بررسی قرار گرفتند. همچنین مطالعات تکمیلی هیستولوژیکی در بستر زخم ها پس از گذشت یک هفته انجام شد.
نتایج این مطالعات نشان داد که این جایگزین پوستی واکنش های ایمنولوژیک و التهابی را در بیماران بخصوص بیمارانی که درصد زیادی از پوست بدنشان را از دست داده اند و مورد پیوند قرار گرفتنه اند را فعال نمیکند. نتایج کارآزمائی های بالینی فاز دو نشان دهنده ی امنیت و کارائی پوست ایجاد شده پس از پیوند در مدت زمان طولانی تر بود.نهایتا این محصول در 18 جولای 2017 تحت حمایت قانون درمان قرن 21 آمریکا که اجازه ورود سریعتر محصولات حوزه پزشکی بازساختی به بازار تحت شرایط کنترل شده را می دهد، مجوز سازمان غذا و داروی آمریکا را دریافت کرد.
https://www.prnewswire.com/news-releases/us-fda-designates-mallinckrodts-stratagraft-as-regenerative-medicine-advanced-therapy-300489200.html
-
مهندسی بافت عروق خونی(1):در اوایل دهه 1950،پیشگامان این حوزه، پروتز هایی عروقی از موادی مانند ابریشم، نایلون و پلی اتیلن ترفتالات PET ( با نام تجاری داکرون) ساختند.
در طول سال های بعد از مواد سنتزی مانند پلی تترافلوئورو اتیلن بسط داده شده ePTFE جهت جایگذاری شریان های بزرگ استفاده شد اما این مواد در ترمیم عروق با قطر کوچک یعنی عروقی با قطر کمتر از 6 میلی متر موفق نبودند.
عدم موفقیت پیوند عروق با قطر کوچکتر به علت تشکیل لخته یا هایپرپلازی سلول های لایه اینتیمای رگ در مناطق آناستوموز یا محل انشعاب عروق است و این پدیده به علت عدم انطباق پیوند و شریان طبیعی و یا آسیب به دیواره شریان ایجاد میشود.
-
مهندسی بافت عروق خونی(2):
عدم موفقیت پروتز های عروقی به دلیل ناتوانی آنها در انتقال فشار های دینامیک عروق، عدم توانایی در واکنش به انقباض عروق و انطباق با جریان خون نیز ممکن است رخ دهد.
به علاوه، پروتز های عروقی توانایی ترمیم، بازسازی و رشد را ندارند و در نتیجه قابلیت کاربرد آنها برای بیماران کم سن و سال دارای نقص های مادرزادی خاص با محدودیت مواجه است.
با توجه به نقص های پیوند های عروقی، محققان به روش های مهندسی بافت جهت طراحی عروق خونی روی آوردند.
-
#اخبار_جدید_سلولهای_بنیادی
شناسایی تغییرات سلولی در روند ترمیم زخممحققین چهار وضعیت رونویسی جدید را در لایه قاعده ای اپیدرمی شناسایی کرده اند که بخشی از فرایند هموستازی اپی درمی است و به میزان زیادی نقش سلول های بنیادی را در فرایند بهبودی پوست نشان می دهد. با استفاده از توالی یابی RNA تک سلولی همراه با RNAScope و تصویربرداری فلورسنت، این تیم تحقیقاتی سه وضعیت غیر تکثیری و یک وضعیت تکثیری را در سلول های قاعده ای در پوست در حال هموستازی شناسایی کرده اند که از نظر متابولیکی متفاوت بودند و از نظر مکانی و فضایی نیز طی اپی تلیالی شدن مجدد زخم مجزا هستند. به موجب این فرایند پرده های موکوسی و پوست، سلول های اپی تلیالی سطحی آسیب دیده یا از دست رفته در زخم را جایگزین می کنند. حفظ بافت اپی تلیالی بوسیله سلول های بنیادی موجود در پوست صورت می گیرد و دینامیک تکثیر و تمایز این سلول ها از ملزومات هموستازی و بازسازی پوست است. از آن جایی که درک ما از دینامیک سلولی مختص بافت در شرایط درون تنی محدود است، یافتن اطلاعات بیشتر در این زمینه می تواند منجر به راهکارهای درمانی در آینده برای زخم های مزمن و دیابتی و ... شود.
Reference: https://pubmed.ncbi.nlm.nih.gov/32187560/ -
#اخبار_جدید_سلولهای_بنیادی
استفاده از سلول های بنیادی برای ساخت ایمپلنت های استخوانی(1)در استفاده از ایمپلنت های ارتوپدی مشکلاتی مانند التهاب و درد وجود دارد. هم چنین این ایمپلنت ها با گذشت زمان شل شده و ثبات خود در جایگاه آسیب را از دست می دهند و همین امر برای فرد مشکلات ثانویه ای را تولید می کند که گاهی به جراحی ختم می شود. سالانه، بیش از 600 هزار فرد در آمریکا دچار شکستگی هایی می شوند که صعب العلاج هستند و به خودی خود بهبود نمی یابند و یا استفاده از آن ها با ترمیم ناقص استخوان همراه است. همین امر موجب تمایل محققین به استفاده از گرافت های استخوانی شده است که یا از خود فرد و جایگاه دیگری گرفته می شوند و یا این که از اجساد گرفته می شوند و برای فرد مورد استفاده قرار می گیرند. هر دو این موردها مشکلات مربوط به خود را دارند.
-
#اخبار_جدید_سلولهای_بنیادی
استفاده از سلول های بنیادی برای ساخت ایمپلنت های استخوانی(2)حال پژوهشگران توانسته اند که گرافت های استخوانی ویژه ای را با استفاده از سلول های بنیادی تولید کنند. آن ها دریافته اند که این سلول ها موجب تولید یک داربست یا بستر بسیار مناسب برای بازسازی استخوان در جایگاه آسیب می شود. در این راستا آن ها از سلول های بنیادی پرتوان استفاده کرده اند که هم توانایی تکثیر و تمایز نامحدود دارند و هم این که قادر به تولید یک ماتریکس خارج سلولی از نظر زیستی فعال تر هستند. این محققین ماتریکس خارج سلولی مترشحه از این سلول ها را استخراج، خالص سازی و غنی سازی کردند و در ادامه آن را به جایگاه نواقص استخوانی ایمپلنت کردند. ارزیابی های صورت گرفته در چند هفته بعد نشان داد که استفاده از این ماتریکس خارج سلولی مشتق از سلول های بنیادی پرتوان، پنج تا شش برابر موثرتر از محرک های گرافتی مورد تایید FDA است. محققین بر این باورند که این گرافت مشتق از ماتریکس خارج سلولی سلول های بنیادی پرتوان می تواند با ایمپلنت های مهندسی شده بی شمار از جمله ایملپنت های پرینت شده سه بعدی یا پیچ های فلزی ترکیب شود و موجبات تلفیق بهتر آن ها با استخوان های پیرامونی را فراهم کند.
Reference: https://www.nature.com/articles/s
-
#اخبار_جدید_سلولهای_بنیادی
استفاده از خاصیت ترمیمی بندناف برای کاهش اسکار ناشی از جراحی بیماری spina bifida
بیماری spina bifida، شرایطی است که به موجب آن پوشش مغز، نخاع یا مننژ به طور کامل تکوین نمی یابد. این نقص می تواند منجر به ناتوانی یا فلجی، عملکرد نامناسب سیستم ادراری و روده و اختلالات ذهنی شود. محققین از یک پچ یا تکه بافتی متشکل از لایه خارجی بند ناف نوزادان سالم برای درمان spina bifida استفاده کرده اند. مشخصه اصلی این تکه های مشتق از بند ناف این است که بند ناف حاوی مواد طبیعی خاصی است که دارای ویژگی های بازسازی کنندگی هستند. این پچ ها یا تکه های مشتق از بند ناف اجازه می دهند که بافت موضعی ناحیه تحت تاثیر spina bifida به جای این که بوسیله تشکیل اسکار به صورت نامطلوب ترمیم شود، به نحو مطلوب تری بهبود یابد و فرد نیازمند جراحی بیشتر برای برداشتن بافت اسکار در ناحیه آسیب نشود. -
#اخبار_جدید_سلولهای_بنیادی
یافته محققان در زمینه نحوه جدیدی از پرینت های زیستی سه بعدیمحققان مفهوم جدیدی از زیست پرینت سه بعدی را معرفی کرده اند که از سلول های بنیادی شکل دهنده ارگانوئید به عنوان بلوک های ساختاری که می توانند به طور مستقیم درون ماتریکس های خارج سلولی قرار گیرنده و به صورت بافتی خودسازمان یابنده درآیند، استفاده کرده است. آن ها با کنترل ژئومتری و تراکم سلولی، بافت های در مقیاس سانتی متری را تولید کرده اند که دارای ویژگی هایی مانند لومن، سیستم عروقی منشعب و اپی تلیال لوله ای روده با غارها یا کریپت های شبه روده طبیعی و هم چنین ویلی ها یا پرزهای روده ای بودند. این بافت پرینت شده بسیار شبیه مجرای معدی روده ای طبیعی بود. به عقیده آنها، فناوری ارگانوئید و تکنولوژی های مهندسی بافت می توانند با یکدیگر تلفیق شوند و خودسازماندهی بافتی را در مقیاس های میلی متری تا سانتی متری کنترل کنند و راه های جدیدی را در راستای کشف داروها، تشخیص و پزشکی بازساختی باز کنند.
Reference: https://www.nature.com/articles/s41563-020-00803-5 -
نوعی هیدروژل جدید برای بهبود زخم های پوستی(1)برای بهینه سازی ترمیم زخم، ایجاد یک محیط فیزیولوژیک بهینه پیرامون زخم جهت پیشبرد رشد سلول های جدید بسیار مهم است. پژوهش های مختلف نشان داده اند که هیدروژل ها به دلیل ویژگی های ساختاری، فیزیکی و شیمیایی می توانند در ایجاد این محیط فیزیولوژیک بسیار مهم باشند. هیدروژل ها شبکه های پلیمری سه بعدی کراس لینک شده ای هستند که می توانند تا بیش از 95 درصد حجم شان آب جذب کنند. آن ها معمولا از پلیمرهای زیست سازگار ساخته شده اند که سازگاری زیستی مناسبی با زخم دارند و هم می توانند مایعات مترشحه از زخم را جذب کنند و هم این که زخم را به طور کامل مرطوب نگه دارند و محیط مناسبی را برای بهبودی زخم فراهم آورند.
-
نوعی هیدروژل جدید برای بهبود زخم های پوستی(2)
یکی از پلیمرهای طبیعی مورد استفاده در ساخت هیدروژل ها آلژینات است که یک ترکیب مشتق از جلبک های دریایی است. در ساخت هیدروژل ها از آلژینات مشکلاتی مانند ژل شدن سریع این پلیمر وجود دارد که کنترل کردن آن را مشکل می سازد و هم چنین محیط این هیدروژل معمول مقداری اسیدی و با PH 4 تا 6 و یا طبیعی است که این محیط اسیدی برای بهبودی زخم سودمند است. اما پژوهش صورت گرفته به وسیله تشیما و همکارانش نشان می دهد که PH تا حدی قلیایی(8 تا 5/8) می تواند بهبودی زخم بوسیله سلول هایی مانند فیبروبلاست ها و کراتینوسیت ها را افزایش دهد. آن ها یک هیدروژل آلژیناتی دارای pH قلیایی را بدون استفاده از ابزاری خاص و در دمای اتاق تولید کرده اند. از آن جایی که هیدروژل ظرف مدت کمتر از 5 دقیقه شکل می گیرد می توانند زخم پوشی بسیار ایده آل برای استفاده در جاهایی باشد که بهبود سریع زخم از اولویت برخوردار است.این روش شامل مخلوط کردن کربنات کلسیم و آلژینات پتاسیم و سپس اضافه کردن آب کربنه به این مخلوط و اجازه دادن به آن برای ژل شدن است. در این روشpH ژل به سمت قلیایی شدن می رود زیرا دی اکسید کربن بعد از ژلاتینه شدن تبخیر می شود. این ژل، ژلی شفاف خواهد بود که اجازه مونیتور کردن روند ترمیم زخم را نیز می دهد و تا 99 درصد آب جذب می کند. این هیدروژل به خوبی اگزودای زخم را جذب می کند و به خوبی می تواند بعد از بهبودی زخم برداشته شود.
Reference: https://infomeddnews.com/hydrogel-wound-healing/
@دانش-آموزان-آلاء
Zaraa -
تولید جنین های مصنوعی در موشمحققان سلول های بنیادی را برای تبدیل شدن به سلول های هر سه لایه جنینی تحریک کردند و با غوطه ور کردن آن ها در محیط حاوی مواد غذایی و فاکتورهای رشد موجب خود سازماندهی آن ها به ساختارهای شبه جنینی شدند. در ادامه این جنین های مصنوعی به رحم موش های ماده منتقل کردند و تنها 7 درصد آن ها قادر به لانه گزینی موفقیت آمیز شد. یک هفته بعد جنین های ایمپلنت شده با موفقیت از طریق سزارین برداشته شدند. ارزیابی های میکروسکوپی نشان داد که ساختارهای جنینی اولیه در این جنین ها شکل گرفتند اما دارای ناهنجاری های قابل توجهی بودند. این ساختار و سازماندهی بافتی به اندازه جنین های طبیعی خوب نبود. این مطالعه برای اولین بار نشان داد که جنین های مصنوعی می توانند در بافت های جنینی در رحم شروع به تکوین کنند. گروه هایی هم پیش از این توانسته بودند جنین های موشی مصنوعی را تولید کنند اما آن ها قادر به ایمپلنت شدن موفقیت آمیز نبودند. شاید موفقیت این مطالعه به دلیل رشد جنین ها درون مخلوطی از مواد غذایی و فاکتورهای رشد شبیه با محیط طبیعی رشد جنین ها باشد. به عقیده محققین تولید این جنین های مصنوعی و تکوین آن ها در رحم به محققین اجازه می دهد تا تکوین واقعی آن ها را به خوبی تقلید کنند و مورد مطالعه قرار دهند. هم چنین این جنین های مصنوعی می توانند برای مطالعه مشکلات مربوط به باروری در آینده نیز مورد استفاده قرار گیرند.
Reference: https://linkinghub.elsevier.com/retrieve/pii/S0092867419310803
-
#اخبار_جدید_سلولهای_بنیادی
تولید سلول های ایمنی در آزمایشگاهمحققان در مطالعه ای نشان داده اند که چگونه اولین ترین سلول های ایمنی در بدن شکل می گیرند. این سلول های ایمنی که از نوع لنفوسیت ها هستند بوسیله سلول هایی شکل می گیرند اولین اندام های جنین را تولید می کنند و این بدین معنی است که آن ها حاصل سلول های بنیادی خون ساز موجود در مغز استخوان نیستند. در این پژوهش، محققین از ترکیبی از دو فناوری آزمایشگاهی قوی به نام های مهندسی ژنتیک و کشت سلول های بنیادی در شرایط آزمایشگاهی استفاده کردند. در ابتدا آن ها آن ها سلول های بنیادی پرتوان مهندسی شده ای را تولید کردند که زمانی که یک مارکر پروتئینی مختص سلول های ایمنی اولیه به نام RAG1 روشن می شود، به رنگ سبز درخشان در می آیند. پروتئین RAG1 را مسئول ایجاد پاسخ ایمنی به عفونت ها و واکسن ها می دانند. در ادامه محققین سلول های RAG1 مثبت را جداسازی کردند و نشان دادند که آن ها می توانند به انواع متعدد سلول های ایمنی از جمله سلول های مورد نیاز برای تکوین کل سیستم ایمنی تبدیل شوند. به عقیده محققین، این سلول های اولیه برای بلوغ صحیح تیموس به عنوان اندامی که مسئول تولید سلول های T است، ضروری هستند. سلول های RAG1 مثبت، محیطی ایمن و مطمئن را برای سلول های ایمنی که بعدا تولید می شوند، ارائه می کنند.
Reference: https://www.nature.com/articles/s41556-019-0445-8 -
راهکار محققان برای بهینه سازی شبکیه های مصنوعیشبکیه مصنوعی، به یک تراشه رایانهای بسیار کوچک و الکترودهای فلزی نیاز دارد. این الکترودها ابتدا فعالیت نورونهای اطراف خود را ثبت میکنند تا نقشهای از انواع سلول ارائه دهند. این اطلاعات در مرحله بعد، برای انتقال دادههای تصویری از دوربین به مغز مورد استفاده قرار میگیرند. یکی از مشکلات این است که دادههای منتقل شده توسط چشم بسیار زیاد هستند؛ تا جایی که ممکن است به داغ شدن تجهیزات الکترونیکی منجر شوند. ای. جی چیچیلنیسکی استاد دانشگاه استنفورد و از اعضای این گروه پژوهشی گفت: تراشههای مورد نیاز برای ساخت یک شبکیه مصنوعی با کیفیت بالا، میتوانند به داغ شدن بافتی منجر شوند که به آن وارد شدهاند. پژوهشگران روشی ابداع کردند تا این مشکل را با کمک دادههای تصویری که نورونها در چشم به وجود میآورند، حل کنند.
نورونهای شبکیه برای انتقال اطلاعات تصویری، پالسهای الکتریکی را به مغز میفرستند. مشکل اینجاست که شبکیه دیجیتالی برای درک ویژگی نورونها، باید این پالسها را ثبت و رمزگذاری کند اما در این فرآیند، گرمای زیادی تولید میشود. نخستین شبکیه دیجیتالی واقعی، به دهها هزار الکترود نیاز دارد که موجب میشوند این فرآیند، پیچیدهتر شود. بوریس مورمان، استاد مهندسی برق دانشگاه استنفورد گفت: ما روشی پیدا کردیم تا بتوانیم سطح درک تصویری را با استفاده از دادههای کمتری انجام دهیم. ما با درک بهتر توانستیم میزان دادههایی که باید پردازش شوند، کاهش دهیم. ما موفق شدیم با انتخاب دادهها، نمونههای اساسی و انتخاب دیجیتالی پالسهای منحصر به فرد، از میزان دادهها کم کنیم. وی افزود: پیش از این، مراحل دیجیتالسازی و فشردهسازی، به صورت جداگانه صورت میگرفتند و دادههای اضافی بسیاری را ذخیره و منتقل میکردند.
Reference:https://engineering.stanford.edu/magazine/article/artificial-retina-could-help-restore-sight-blind
-
استفاده از روشی موثر برای ترمیم طبیعی دندانزمانی که دندان دچار تروما یا فساد می شود، سه لایه ممکن است تحت تاثیر قرار گیرند: لایه خارجی مینا، لایه میانی دنتین و لایه داخلی پالپ نرم دندان. پژوهش های گذشته نشان داده است که داروی Tideglusib می تواند با تحریک تولید لایه میانی(دنتین) به حفاظت از لایه داخلی کمک کند و اجازه ترمیم خودبخود دندان را بدهد. برای تست موثر بودن این روش در بیماران، محققین به بررسی این امر پرداختند که آیا حجم دنتیتن ترمیم کننده تولید شده برای ترمیم حفرات موجود در دندان انسان کافی است یا خیر. هم چنین آن ها به بررسی طیف دوز داروی مذکور پرداختند و میزان رسوب معدنی در دنتین ترمیم شده را نیز با دنتین طبیعی مقایسه کردند. آن ها کشف کردند که استفاده از این دارو موجب می شود که ناحیه ترمیم تنها به سلول های پالپ و درست در جایگاه آسیب محدود می شود و ریشه پالپ تحت تاثیر قرار نمی گیرد. هم چنین آن ها دریافتند که ناحیه رسوب معدنی ترمیم نیز به طور قابل توجهی با رسوب کلسیمی استخوان متفاوت بود و بیشتر شبیه دنتین طبیعی بود. علاوه براین مشخص شد که داروی Tideglusib می تواند ترمیم ناحیه آسیب دنتینی را فعال کرد و موجب ترمیم ناحیه ضایعه تا 10 برابر بیشتر شود. محققین بر این باورند که در آینده ای نزدیک ترمیم طبیعی دندان از طریق فعال کردن سلول های بنیادی موجود در دندان صورت می گیرد و می توان به دنبال تست داروها یا ترکیباتی بود که بتوانند این سلول ها را فعال کنند...
Reference: https://medicalxpress.com/news/2020-03-evidence-clinical-viability-natural-tooth.html
-
تولید نوعی هیدروژل جدید قابل استفاده در مهندسی بافت استخوانهیدروژل ها از شبکه های پلیمری ساخته شده اند و همان طور که گفته شد موثر بودن آن ها در انتقال داروها و سلول های بنیادی به بافت هدف ثابت شده است. اما در مورد جراحی دهان، استفاده از این هیدروژل ها کمتر موثر است زیرا خون و بزاق مانع از چسبندگی موثر آن به جایگاه جراحی شده می شوند و به همین دلیل کارایی آن به حداقل می رسد. به همین دلیل محققین به دنبال یافتن محصولی با چسبندگی بهینه در محیط دهان بوده اند. در این راستا محققان با الهام گرفتن از صدف های دریایی که توانایی چسبیدن به سطوح زیر آب را دارند، یک هیدروژل مبتنی بر آلژینات را تولید کردند. آلژینات ماده موجود در جلبک هاست و زمانی که هیدراته یا آب دار می شود به صورت چسبنده و آدامس مانند در می آید. آن ها این هیدروژل جدید بارگیری شده با سلول های بنیادی مشتق از بافت لثه را در یک مطالعه 18 هفته ای برای مدل های رتی پری ایمپلنتیت استفاده کردند. پری ایمپلنتیت یک بیماری عفونی است که منجر به التهاب لثه و ساختار پیرامون ایمپلنت دندانی می شود. ارزیابی ها نشان داد که در انتهای این 18 هفته استخوان پیرامون ایمپلنت ها در همه رت ها به طور کامل بازسازی شد. در این مطالعه محققین هیدروژل را به درون دهان رت و جایگاه هدف تزریق کردند و با یک تیمار نوری موجب جامد شدن این هیدروژل شدند. تیمار نوری موجب سفت شدن هیدروژل می شود تا یک ناقل با ثبات تر برای انتقال سلول های بنیادی به جایگاه آسیب باشند.
Reference: https://stm.sciencemag.org/content/12/534/eaay6853
-
نوبل شیمی ۲۰۲۰ به دو محقق زن بهخاطر تحقیقات در زمینه مهندسی ژنوم رسید
مانوئل شارپنتیه، محقق فرانسوی و جنیفر دودنا، دانشمند آمریکایی به دلیل توسعه روش ویرایش ژنوم (مهندسی ژنوم) معروف به کریسپر یا «قیچی ژنتیکی»، برنده نوبل شیمی ۲۰۲۰ شدند. این تحقیقات نویدبخش بهبود بیماریهای ژنتیکی است.کمیته نوبل گفت که این روش به این معنی است که محققان میتوانند دیانای حیوانات، گیاهان و میکروارگانیسمها را «با دقت بسیار بالا» تغییر دهند.
قیچی ژنتیکی روشی است که از آن برای بریدن و جدا کردن یک ژن معیوب استفاده میشود.
کلیس گوستافسون، رئیس کمیته شیمی آکادمی نوبل گفت: «قدرت عظیمی در این ابزار ژنتیکی هست که همه ما را تحت تاثیر قرار میدهد. این نه تنها انقلابی در علوم پایه ایجاد کرده است بلکه منجر به تولید محصولات نوآورانه شده است که در درمانهای پیشگامانه پزشکی کاربرد خواهد داشت.» -
شناسایی بیومارکری جدید برای غربالگری سلول های بنیادی مزانشیمیدر حالی که صدها کارآزمایی بالینی که شامل هزاران بیماران هستند برای تست توانایی سلول های بنیادی مزانشیمی انسانی در درمان بیماری های مختلف از بیماری های قلبی تا آسیب های مغزی در دست انجام است اما هنوز راهی وجود ندارد که کیفیت سلول های بنیادی قبل از این که اهدا کننده متحمل رویکرد دردناک جمع آوری سلول از مغز استخوان و ... شود تعیین شود.
اما مطالعه ای جدید بوسیله پژوهشگران A*STAR بیومارکری بالقوه را برای پیش غربالگری ظرفیت و پتانسیل رشد سلول های بنیادی مزانشیمی پیشنهاد کرده است. در مطالعات گذشته این تیم تحقیقاتی سلول های بنیادی مزانشیمی انسانی را از نظر سن و تطبیق جنسیتی اهدا کننده به گروه های با ظرفیت رشد کم و زیاد دسته بندی کردند و معیارهایی را برای شناسایی سلول های بنیادی با پتانسیل تقویت شده ارائه کردند.این سلول های بنیادی مزانشیمی انسانی پتانسیل تکثیری افزایش یافته ای را نشان دادند که با کلونی زایی تقویت شده آن ها، بیان مارکرهای خاص سطح سلولی و به طور مهم تر توانایی بهبود یافته آن ها برای وساطت کردن تشکیل استخوان نابجا مرتبط بودند. اما در این پژوهش جدید آن ها به آنالیز مولکولی این سلول ها نیز پرداختند تا بتوانند توانایی سلول ها را بهبود ببخشند. آنالیز میکرواری نشان داد که سلول های بنیادی مزانشیمی با حذف ژنومی گلوتاتیون S-ترانسفراز تتا(GSTT1)، ظرفیت رشد زیادی دارند. سلول های بنیادی مزانشیمی انسانی فاقد GSTT1 توانایی کلونی زایی بالایی را نیز نشان می دهند و تلومرازهای طویل تری دارند. هر دو این معیارها برای تعیین پتانسیل سلول های بنیادی مزانشیمی مهم هستند. این مطالعه GSTT1 را یک بیومارکر بالقوه برای تولید مقادیر انبوه سلول های بنیادی مزانشیمی معرفی کرده است و ممکن است در انتخاب اهدا کننده های بالقوه برای ایجاد ذخیره های با کیفیت سلول های بنیادی مزانشیمی و بهبود سلول درمانی موثر باشد.
Reference: https://stemcellsjournals.onlinelibrary.wiley.com/doi/full/10.1002/stem.3203
@دانش-آموزان-آلاء -
استفاده از پروتئین های انسانی برای تولید مواد اولیه در مهندسی بافت عروق
نخ های مورد استفاده برای تولید بافت ها یا نسوج جدید از زیست ماده ای موسوم به ماتریکس سازماندهی شده که بوسیله سلول(CAM) تولید شده اند است. بخش اعظم CAM را کلاژن تشکیل می دهد که فراوان ترین پروتئین بدن است و موجب استحکام مکانیکی بافت ها و اندام های بدن می شود. CAM به خوبی بوسیله بدن پذیرفته می شود زیرا به طور کامل از بدن انسان مشتق شده است و هیچ ماده افزودنی شیمیایی را دارا نیست. در مطالعه ای جدید، محققین صفحات CAM را برش داده و به صورت نوارها یا ریبون هایی در آورند که می تواند به صورت مستقیم یا به صورت پیچ و تاب دار به عنوان نخ استفاده شوند. این نخ ها برای بافته شدن و تولید عروق خونی استفاده شدند و بدون این که ماده شیمیایی به آن ها افزوده شود، ویژگی های مکانیکی عالی را از خود نشان دادند. در حال حاضر پروتوتایپ های مختلفی از عروق خونی بوسیله این الیاف CAM تولید شده است و محققین بدنبال بهینه سازی روش های مدیریت کردن ساخت نخ ها و نوارهای CAM هستند.
Reference: https://medicalxpress.com/news/2020-04-human-tissue-blood-vessels.html
-
تلاش محققان برای بازسازی آسیب های نخاعی در مدل های جانوری
پژوهشی جدید نشان می دهد که برخلاف تصور موجود، بدست آوردن عملکرد مجدد آکسون ها که بدلیل آسیب های رخ داده از بین می رود امکان پذیر است و این امر به وجود مولکولی موسوم به Lin28 مربوط است که رشد سلولی را تنظیم می کند. در این مطالعه جدید محققین نشان داده اند که افزایش بیان Lin28 در مدل موشی آسیب نخاعی و هم آسیب عصب بینایی موجب افزایش رشد مجدد آکسون ها می شود و این جانور مجددا قادر به برقراری ارتباط با بخش های مختلف بدنش است. یافته ها حاکی از این است که Lin28 یک تنظیم کننده اصلی بازسازی آکسونی و یک هدف درمانی امیدوار کننده برای آسیب های سیستم عصبی مرکزی است. این اولین بار است که توانایی قابل توجه تنظیم افزایشی Lin28 در بازسازی آسیب های نخاعی در مدل های جانوری نشان داده شده است.
@دانش-آموزان-آلاء